Computation with encrypted data in Data Center.

Existing solution h ttps:// Data t_{B} Center KAP $k_{AB} = k = k_{BA}$ Query: Q salary for 1 moth
to compute the salary deuting the 12 months $Dec(k, R) = [12, B1, B2]$ $Q:[12, B1, B2]$ $Sal = 12*(S_{\rho_1} + S_{\rho_2})$ $C_{\mathcal{A}}$ $Enc(k, Q) = C_{Q}$ $Enc(k, Sal) = C_{sal}$ Dec $(k, c_{sat}) =$ Sal Cloud services $Enc(k, BL) = C_{BL}$ Enc (k, B2) = C_{B2} C_{B1} , C_{B2} , C_{12}
Enc (k, 12) = C_{12} $\mathcal{C}_{\leq} = \mathcal{C}_{12} * (\mathcal{C}_{81} + \mathcal{C}_{82})$ Dec $(k, C_5) =$ sal Homomorphic encryption $5al = 12 * (B1 + B2)$ Omit this part Let G and H be any (algebraic) groups: <G, ₀>, <H, •> with neutral elements e^o and e^* respectively. **Definition**. The mapping **φ** is named as homomorphism if for every *x*, **y** ∈ *G* there exists *a*, *b* ∈ *H* such that $p_{\mathbf{a}}(v_{\mathbf{a}}|v) = p_{\mathbf{a}}(v) \mathbf{a} \cdot \mathbf{a}(v) - \alpha \mathbf{a} \cdot \mathbf{b}$ 8. $p_{\mathbf{a}}(p_{\mathbf{a}}|v) = p^*$ \mathbf{I} (1)

Definition. The mapping **φ** is named as homomorphism if for every *x*, **y** ∈ *G* there exists *a*, *b* ∈ *H* such that

 $\phi(x) = \phi(x) = \phi(y) = a \cdot b$ **&** $\phi(e^{\circ}) = e^*$ If **φ** is 1-to-1 mapping then **φ** is named as isomorphism we denote by **ϕ** .

Example: $G = Z_{p-1}^+ = \{0, 1, 2, ..., p-2\}; \langle Z_{p-1}^+, + \text{mod } p-1 \rangle; \quad e^o = 0 \in Z_{p-1}^+; |Z_{p-1}^+| = p-1.$ *H* = $Z_p^* = \{1, 2, 3, ..., p-1\}; \langle Z_p^*, * \bmod p \rangle;$ $e^* = 1 \in Z_p^*;$ $|Z_p^*| = p-1.$

We define a function (mapping) **ϕ** providing an isomorphism **ϕ**: *Z^p***-1 +** → *Z^p ** . Modular exponent function for generator *g* in Z_p^* is defined by equation: $a = g^x$ mod *p* $>$ mod exp(g,x,p)

Fermat (little) Theorem. If *p* is prime, then for any integer *z z* $z^{p-1} = 1 \mod p$.

Comment. According to Fermat theorem and convention *z ^p***-1** = 1 mod *p* and **z ⁰**= 1. Then **0** is in some way equivalent to *p*-1 when we perform a computations in exponent mod *p*. This equivqlence we can define in an unique way

$$
p-1 = 0 \mod (p-1)
$$
.

Indeed ($p-1$) mod ($p-1$) = 0 since the reminder of division of ($p-1$) by module ($p-1$) is equal to 0.

Corollary. For all x, y, z $\in \mathbb{Z}_{p-1}$ ⁺ the exponent operations performed in \mathbb{Z}_p^* in general must be performed mod (*p*-1) to avoid a mistakes for more complicated expressions, e.g.

 $q^{z(x+y) \mod (p-1)} \mod p = q^{(zx+zy) \mod (p-1)} \mod p = (q^{zx \mod (p-1)} \mod p * q^{zy \mod (p-1)}) \mod p$.

Let **Z** be a set of positive integers **Z** ={0, 1, 2, 3, ... ∞ }. And let $p=11$. Integers taken mod *p*-1 are mapped to the set *Zp***-1 ⁺** = {0, 1, 2, …, *p*-2}.

If $p=11$, then $p-1=10$ and we obtain Z_{10} ⁺ = {0, 1, 2, ..., 9} which is an additive group < Z_{10} ⁺, +>.

Interresting observation: please verify that mapping **φ**mod 11 *:* **Z** → *Z***10+** is a homomorphism,

where *Z* ={0, 1, 2, 3, … ∞} we are interpretting as infinite additive group of integers: <*Z*, **+**>.

This result can be generalized for any mapping **φmod** *n :* **Z** → *Zⁿ* **+** , where *n* is any finite positive integer and Z_n^+ is and additive group with addition operation mod n , i.e. < Z_n^+ , +>.

Let *p* is prime and *g* is a generator in *Z^p ** .

Then modular exponent function for generator *g* in *Z^p ** and defined by equation:

 $a = g^x \mod p$. (!!)

 $(!)$

is a mapping $\phi: Z_{p-1}^+ \to Z_p^*$.

Example. Let *p*=11 then *p*-1=10, then *Z***10+** = {0, 1, 2, …, 9} and *Z^p ** = {1, 2, 3, …, 10}. Then the generator in in *Z^p ** is *g*=2. Check it.

Theorem. Function (mapping) $\phi: Z_{p-1}^+ \to Z_p^*$ is an isomorphism. Proof. ⊳ 1. According to Fermat theorem **ϕ** is 1-to-1 mapping since |*Zp***-1 ⁺**|= *p*-1 = |*Z^p **| and *g* is a generator of *Z^p ** , i.e. it generates all the values in *Z^p ** by powering with integers in *Zp***-1 +** . المقدمة المصالحة المتابعة التي تصدر المصدر التي تعدد التي تعدد التي تعدد التي ت
. **Theorem**. Function (mapping) $\phi: Z_{p-1}^+ \to Z_p^*$ is an isomorphism.

Proof. ⊳ 1. According to Fermat theorem **ϕ** is 1-to-1 mapping since |*Zp***-1 ⁺**|= *p*-1 = |*Z^p **| and *g* is a generator of *Z^p ** , i.e. it generates all the values in *Z^p ** by powering with integers in *Zp***-1 +** . Looking deeper it is a consequence of Lagrange theorem of algebraic groups.

 2. Now we prove equation (!). Taking into account that modular exponent function is defined by the generator *g* as a parameter we denote it by

 $\Phi_g(x) = a = g^x \mod p.$ (!!!) For all **x**, $y \in G$ = Z_{p-1} ⁺ = {0, 1, 2, ..., p-2} there exists a , $b \in H$ = Z_p ^{*} = {1, 2, 3, ..., p-1} such that $a = g^x$ mod p and *b* = *g ^y* mod *p*.

Then the following identities takes place analogous to the identities of ordinary exponent function $\pmb{\phi}_g(\pmb{x+}\pmb{y})$ = $\pmb{g}^{\pmb{x+\pmb{y}}}$ mod $\pmb{p} = (\pmb{g^x}$ mod $\pmb{p} \pmb{*}$ $\pmb{g^y}$ mod $\pmb{p} = \pmb{\phi}_g(\pmb{x}) \pmb{*}$ $\pmb{\phi}_g(\pmb{y}) = \pmb{g^x \pmb{*} }$ $\pmb{g^y}$ mod $\pmb{p} = \pmb{a} \pmb{*}$ \pmb{b} mod \pmb{p} .

$$
\phi_g(e^{\circ}) = \phi_g(0) = g^{\circ} \mod p = 1 \mod p = 1 = e^* \in \mathcal{A}_p^*
$$

The theorem is proved \blacktriangleleft .

 $Puk_A = \alpha$ $B:$ is able to enerypt
 m to h : $m < p$ $\hat{\mathcal{H}}$: $B: \mathsf{M} \leftarrow \mathsf{randi}\left(\mathcal{I}_{p}^{*}\right)$ $E = m \cdot Q^{\prime} \mod p$
 $D = q^{\prime} \mod p$ $c = (E, D)$ A is able to decrypt $C = (E, D)$ using her Pr $K_A = X$. $(-x)$ mod $(p-1) = (0-x)$ mod $(p-1) = \begin{vmatrix} 1 & D^{-x} \mod(p-1) \\ 2 & E \cdot D^{-x} \mod p \end{vmatrix}$
=(p-1-x) mod (p-1) $=(p-1-x)$ mod $(p-1)$ **D^{-x}** mod *p* computation using Fermat theorem: If *p* is prime, then for any integer *a* holds *a p-1* **= 1 mod** *p*. $D^{P-1} = 1$ mod P / D^{-x} $D^{p-1} \cdot D^{x} = 1 \cdot D^{x}$ mod $p \implies D^{p-1-x} = D^{x}$ mod p \overline{D}^{\times} modp = $D^{p-1-\times}$ modp Homomorphic property of Eltramal encryption Let we have 2 messages m_1 , m_2 to be encrypted r_{1} \leftarrow ramdi (\mathcal{X}_{ρ}^{*}) τ_2 + randi (\mathcal{L}_p^*) $Enc_{\alpha}(r_1, m_1) = (E_1, D_1) = c_1$ $Enc_{\alpha}(r_{2},m_{2})=(E_{2},D_{2})=c_{2}$ $E_4 = m_1 \cdot \mathcal{O}^{r_1}$ mod ρ $E_2 = m_2 \cdot a^{r_2} \mod p$ $D_1 = q^{r_1} \mod p$ $D_2 = g^{f_2} \mod p$ Multiplicative homo rphic encryption: \implies $Enc_\alpha(\mathsf{r}_1\,,\mathsf{m}_1)\cdot Enc_\alpha(\mathsf{r}_2\,,\mathsf{m}_2)$ $Enc_{\alpha}(\Gamma_1+\Gamma_2, m_1\cdot m_2)$ $\overline{c_1}$. $\overline{c_2}$ C_{12}

= $g^{m_1}g^{m_2}a^{r_1+r_2}mod p = g^{m_1+m_2}a^{r_1+r_2}mod p$ $C_{12} = g^{m_1 + m_2} \cdot a^{r_1 + r_2}$ mod p B_1 : C_1 C_2 $Dec_x(C_1) = n_1 = g^{m_1}$ modp
Enc_a (G_1 , G_1) = C_{r_1} $Dec_x(C_1) = m_1 = g^{m_1}$ modp the value $n_1 = q^{m_1}$ mod p. B_2 :
Enc_a (r_2 , r_2) = c_{r_2}) \rightarrow π : dos the same θ : computes $E_{12} = E_1 \cdot E_2 = q^{m_1 + m_2}$ modp E_{12} > Net Encrypts ralue n3 r_{3} + rand for enc. Value n_{3} $n_3 = q^{m_3} \mod p$ $Enc_{a}(r_{3}, n_{3}) = c_{3} = (E_{3}, D_{3}) = (n_{3} a^{r_{3}} mod p_{9} a^{r_{3}} mod p_{9})$ computes $\Gamma_4 = \Gamma_1 + \Gamma_2 - \Gamma_3$ mod (p-1) $\Gamma_1 + \Gamma_2 = \Gamma_3 + \Gamma_4$ mod (p-1) Encrypts value My $n_q = q^{m_q}$ mod p $Enc_{a}(r_{4}, n_{4}) = c_{4} = (E_{4}, D_{4}) = (n_{4} a^{r_{4}} mod p, q^{r_{4}} mod p)$ Declares c_{3} , c_{4} to the Net Net verifies if $C_1 \cdot C_2 = C_3 \cdot C_4$ Till this place **Homomorphic encryption: cloud computation with encrypted data.**

Paillier encryption scheme is additively-multiplicative homomorphic and has a potentially nice applications in blockchain, public procurement, auctions, gamblings and etc.

